Real Estate
General Insurance
Government
Fintech
Gas & Petroleum
Employee Benefit
Government
Community
Hotel & Tourism
Humane Tech
Sports
Disaster Management
Big Data Analytics is a vital part of the digital transformation journey and crucial in today’s economy. Entrepreneurs are using large data volumes, different data types and velocity, to empower their business through innovative business models, the latest technologies, and improved business processes. Big Data Analytics is widely used to harness the “potential” of your data, leading to quick and accurate decision making by finding the current market trends, dynamic customer preferences, and other useful information for implementing business strategies effectively.
Moogle has successfully delivered cutting-edge Data Analytics solutions and customized dashboards for our clients in various industry verticals from multinational banks to research institutes. Let’s look at the Analytics tools we use to provide automated process monitoring and control for your enterprise.
Apache Spark is a leading platform for large-scale SQL, big data processing, batch and graph processing, streaming, and machine learning. It is of great use for analytics and ML workloads and interferences, AI applications, ETL processing, and for batch and interactive processing of SQL. Spark allows reuse of code and while using multiple libraries simultaneously at many stages in modern data pipelines.
Know more- Spark
Python is the most preferred language for Big Data Analytics known for it's best frameworks and is used across a majority of industry verticals. It is the fastest-growing programming language and used by over 70% of the developers worldwide. It is a general-purpose, open-source programming language, and is in high demand by Big Data companies. Currently, leading brands like Instagram, Reddit, and Venmo use Python and Big Data to cater to their growing business needs successfully.
Know more: Python
Statistical Analysis System or SAS is a software suite developed for advanced data analysis processes like data management, business intelligence, predictive analysis, etc. SAS is used to perform various tasks like multiple data inputs, efficient data management, straightforward data management, easy data and results representation, and many more. It can be used by both Base SAS and graphical interface or SAS programming language.
Know more: SAS
It is an open-source software framework that runs and stores applications on collections of server hardware. Hadoop is preferred for Big Data Analytics as it allows enormous storage space and multi-tasking of processes at the same time. It works well with both structured and non-structured data, and offers great flexibility to its users, for research and production. Due to its vast data storing capabilities, Hadoop is also referred to as “Data Lake.” It is prominently used as a Data Analytics tool for customer analytics useful for e-Commerce, and predictive analytics, for fraud detection and equipment failure.
Know more: Hadoop
The Splunk software helps in unlocking the hidden potential of all your machine-generated data. Data from any source like, various websites, social media platforms, hypervisors, app servers, sensors, business applications, traditional databases, and open-source data stores, etc., can be extracted and organized in real-time, in a unified way, using Splunk. It also allows swift searching, exploring, navigating, analyzing, and visualizing all data from one place.
Know more: Splunk
The above mentioned Big Data Analytics tools have helped us cater to the growing needs of entrepreneurs and understand data trends, changing patterns and anomalies, for better and accurate data visualizations, reports, and dashboards. Our expertise in serving our global clientele has earned us the tag of an emerging Big Data Analytics company. We provide customized solutions for your data handling problems, using appropriate and the latest Big Data Analytics tools and frameworks.