Dashboard
×
Comprehensive

Software Development

Company For Your Business Success

Major Project
Major Projects
D a s h b o a r d
management consulting digital transformation

Damage Detection

Developing AI-powered
Screen Damage Detection in Mobile Phones

media-banner

As the AI industry is thriving in the digital landscape and uplifting every business vertical, a leading market leader in the mobile phone refurbishment and replacement industry approached Seasia to detect the extent of screen damage in mobile devices automatically. It would help save a huge time, costs, and efforts required throughout the manual inspection and tagging of all the inventory coming into their warehouses.

Specializations of the Automated Screen Damage Detection System

Minimized Manual Efforts

Automated approach for visual inspection of the screen from varying angles, which ensures a robust data capture mechanism, with minimal efforts.

Cross-device Damage Detection

Seamless detection and grading screen damage throughout multiple mobile phone models and screen types, with higher efficiencies.

Phone Model and Make Detection

Trained to operate across latest brands of mobile devices; as adjunct information, the algorithm even recognizes the phone make and model.

How the system works?

Seasia established a digital vision-based identification system for detecting cracks on the mobile screen. Backed by CCD (charge coupled device) camera, images of the mobile’s screen on the industrial assembly line are received. The camera is further revolved from different viewing angles through detection of the mobile to evade the cracks that couldn’t be spotted from specific viewing angles. Once done with that, the received RGB model images are converted into HSI color format.

Backed by Nanonets and NSFW classification, general object detection, and OCR, image processing and deep learning models become hassle-free and make the user’s job easy. In addition, the simple and user-friendly model will enable users to rapidly build their own custom model by uploading the data and labeling them, and the Nanonets API further helps in identifying if the screen is cracked or not.

media-banner

Want to Develop Screen Damage Detection System ?

Going Beyond the Expectations

Convolutional Neural Networks

Convolutional Neural Networks

Delivered a next-generation ML model solely based on Convolutional Neural Networks utilizing TensorFlow and trained on 8000+ training images across 200+ cracked and normal devices.

Advanced Deployment

Advanced Deployment

The subsequent TensorFlow model was arrayed at three multiple warehouses for the customers for processing mobile devices; training is underway for identifying cracked tablet screens further.

Minimized Processing Time

Minimized Processing Time

The advanced model automated 80% of the incoming inventory processing, which directly ensured approximately 90% reduction in the overall processing time, which further helped save a lot of effort, costs, and resources.

Client Satisfaction is Our Goal

What Our Clients Say About Us

Latest Insights

Blog

Mobile App Development
block

11 Best NFC Payment Apps That Provides an Extra Layer of Security

Integral to each contactless mobile activity is a small microchip..

block
Software Development

Jan 20,2025

How Insurance Technology Trends Will Shape 2025

Insurance technology has long been recognized as one of the most data-intensive industries. Recent advances in technology, from AI to…

block
Artificial Intelligence

Jan 19,2025

The Power of AI in Government: How Governments Worldwide Are...

Artificial intelligence is no longer a futuristic concept, but a practical and transformative force that is impacting almost every industry.…

block
Software Development

Jan 09,2025

Custom Apps to Cloud: Seasia's Healthcare Software Developme...

The recent transformations in the healthcare IT services industry are driven by technological advancements that primarily focus on improving patient…

block
Tech Trends

Dec 31,2024

Powering the Cashless Economy with Digital Wallet App Develo...

The global shift toward a cashless economy has accelerated in recent years. The key drivers of this shift are rapid…

block

Our Partners

CONTACT US
×